Journal of Organometallic Chemistry, 421 (1991) 151–157 Elsevier Sequoia S.A., Lausanne JOM 22217

Synthese von Phenylbrom-, Phenyliodund Phenylwasserstoff-trisilanen

K. Hassler * und U. Katzenbeisser

Institut für Anorganische Chemie der T.U., Stremayrgasse 16, A-8010 Graz (Österreich) (Eingegangen den 8. Juli 1991)

Abstract

The syntheses of phenylbromo- and phenyliodotrisilanes $X_n Si_3 Ph_{8-n}$ (X = Br, I) are described, starting from 1,1,1,3,3,3-hexaphenyltrisilane, octaphenyltrisilane, 1-(*p*-Tolyl)heptaphenyltrisilane or 1,1,1-Tris(*p*-tolyl)pentaphenyltrisilane. A subsequent reduction with LiAlH₄ gives the corresponding phenyltrisilanes $H_n Si_3 Ph_{8-n}$. All compounds were characterized with spectroscopic methods (²⁹Si-NMR, IR) and elemental analyses.

Zusammenfassung

Ausgehend von 1,1,1,3,3,3-Hexaphenyltrisilan, Oktaphenyltrisilan, 1-(p-Tolyl)heptaphenyltrisilan und 1,1,1-Tris(p-tolyl)pentaphenyltrisilan wird die Synthese einer Reihe von Trisilanen der Zusammensetzung X_nSi₃Ph_{8-n} (X = Br, I) beschrieben. Durch nachfolgende Reduktion mit Lithiumaluminiumhydrid sind daraus die Phenyltrisilane H_nSi₃Ph_{8-n} zugänglich. Alle Verbindungen wurden mit spektroskopischen Verfahren (²⁹Si-NMR, IR) und Elementaranalysen charakterisiert.

Einleitung

Kürzlich haben wir über die Synthese und Spektroskopie von Bromdisilanen und Ioddisilanen nach dem folgenden allgemeinen Reaktionsschema berichtet [1,2]:

$$\operatorname{Ar}_{n}\operatorname{Si}_{2}\operatorname{H}_{6-n} \xrightarrow{\operatorname{HI}/\operatorname{AlB}_{3}} \operatorname{I}_{n}\operatorname{Si}_{2}\operatorname{H}_{6-n} \text{ und } \operatorname{Br}_{n}\operatorname{Si}_{2}\operatorname{H}_{6-n}$$
(1)

(Ar = Phenyl, Mesityl, 1-Naphtyl)

Eine Übertragung auf Trisilane ist naheliegend und auch möglich [3], es existieren z.Z. aber kaum ausgereifte Syntheseverfahren für die Phenyltrisilane $H_nSi_3Ph_{8-n}$ und deren Vorstufen, die entsprechenden Halogentrisilane:

$$X_{n} \mathrm{Si}_{3} \mathrm{Ph}_{8-n} \xrightarrow{\mathrm{LIAH}_{4}} \mathrm{H}_{n} \mathrm{Si}_{3} \mathrm{Ph}_{8-n}$$

$$(2)$$

$$(X = \mathrm{Cl}, \mathrm{Br}, \mathrm{I})$$

0022-328X/91/\$03.50 © 1991 - Elsevier Sequoia S.A. All rights reserved

Setzt man Oktaphenyltrisilan im Bombenrohr mit flüssigem Bromwasserstoff um, so kann nach etwa 6 Tagen fast quantitativ $(Br_2PhSi)_2SiPh_2$ isoliert werden [4], während nach etwa zwei Monaten nur mehr 1,3-Diphenylhexabromtrisilan vorliegt:

$$Si_{3}Ph_{8} \xrightarrow{HBr}{2 \text{ Monate}} PhBr_{2}SiSiBr_{2}SiBr_{2}Ph$$
 (3)

(mit HI ist auch die Synthese von (I₂PhSi)₂SiPhI möglich [4])

Die erhöhte Reaktivität von p-Tolylgruppen (verglichen mit $-C_6H_5$) kann ebenfalls für synthetische Zwecke herangezogen werden. So reagiert 1-p-Tolylheptaphenyltrisilan mit gasförmigem Iodwasserstoff nach

$$p\text{-TolPh}_2\text{SiSiPh}_2\text{SiPh}_3 \xrightarrow[C_6H_6]{\text{HI}/\text{All}_3} I_3\text{SiSiI}_2\text{SiI}_2\text{Ph}$$
(4)

zu 1-Phenylheptaiodtrisilan. In flüssigen Halogenwasserstoffen scheinen die Reaktivitäten aber annäherend gleich.

p-Tol₃SiSiPh₂SiPh₃ reagiert mit HBr im Bombenrohr hauptsächlich zu p-TolBr₂SiSiPhBrSiBr₂Ph und nicht, wie erwartet, zu Br₃SiSiPhBrSiBr₂Ph:

$$p-\text{Tol}_3\text{SiSiPh}_2\text{SiPh}_3 \xrightarrow[4]{\text{HBr}_1} p-\text{TolBr}_2\text{SiSiPhBrSiBr}_2\text{Ph}$$
 (5)

Im Gegensatz zu früheren Untersuchungen an Si_2 -p-Tol₆ [5] konnten wir keine schnelle und vollständige Reaktion der p-Tol₃Si-Gruppierung feststellen.

Einen weiteren Syntheseweg zu Phenylhalogentrisilanen stellt die Bromierung und Iodierung von SiH-Funktionen mit CBr_4 bzw. HCI_3 dar, die für 1,1,1,3,3,3-Hexaphenyltrisilan, Heptaphenyltrisilan und 1,1,2,2,3,3-Hexaphenyltrisilan folgendermaßen abläuft:

$$(Ph_{3}Si)_{2}SiH_{2} \xrightarrow{(Ph_{3}Si)_{2}SiBr_{2} \text{ bzw. } (Ph_{3}Si)_{2}SiHBr} (6)$$

$$(Ph_{3}Si)_{2}SiH_{2} \xrightarrow{(Ph_{3}Si)_{2}SiI_{2}} (6)$$

$$HPh_{2}SiSiPh_{2}SiPh_{3} \xrightarrow{(CHBr_{3})} BrPh_{2}SiSi_{2}Ph_{5} (7)$$

$$HPh_{2}SiSiPh_{2}SiPh_{2}H \xrightarrow{(CHI_{3})} IPh_{2}SiSi_{2}Ph_{5} (8)$$

Mit CHBr₃ ist ein stufenweiser Ersatz der H-Atome bei (Ph₃Si)₂SiH₂ möglich.

Im Gegensatz zur *p*-Tolylgruppe ist der Benzylsubstituent gegenüber HX/AIX_3 inert. 2,2-Dibenzylhexaphenyltrisilan reagiert mit $HBr/AIBr_3$ nach

$$Ph_{3}SiSiBz_{2}SiPh_{3} \xrightarrow{HBr/AlBr_{3}} Br_{3}SiSiBz_{2}SiBr_{3}$$
(9)

zum Hexabromderivat, mit Pt/H_2 tritt keine Reaktion ein. Das Si-Benzyl-Strukturelement läßt sich nach unseren Erfahrungen nicht in einfacher Weise zu SiH und Toluol umsetzen. Über die Synthese der Bromtrisilane $Br_nSi_3H_{8-n}$ und Iodtrisilane $I_nSi_3H_{8-n}$ wird in Kürze berichtet werden [3].

Experimenteller Teil

1-(p-Tolyl)heptaphenyltrisilan und 1,1,1-Tris(p-tolyl)pentaphenyltrisilan

40 g (56 mmol) 1,2-Bis(*p*-tolyl)tetraphenyldisilan bzw. 42 g (69.7 mmol) Hexa(*p*-tolyl)disilan werden in etwa 300 ml Diethylether mit der äquivalenten Menge Na/K-Legierung zu *p*-TolPh₂SiK bzw. *p*-Tol₃SiK gespalten [6]. Nach vier (*p*-Tol₆Si₂) bzw. sieben Tagen (*p*-Tol₂Si₂Ph₄) ist die Reaktion beendet. Die gebildete Suspension der Silylalkaliverbindung wird in einen Tropftrichter übergeführt und unter kräftigem Rühren zur äquivalenten Menge Pentaphenylchlordisilan zugetropft (-50 °C). Man rührt noch einige Zeit bei Raumtemperatur, ersetzt den Ether durch n-Heptan und filtriert heiß. Beim Abkühlen kristallisieren die Trisilane in Form farbloser Nadeln.

Elementaranalysen: p-TolPh₂SiSiPh₂SiPh₃, Si₃C₄₉H₄₂ (gef./ber.): C, 82.17/82.3%; H, 6.12/5.92%. p-Tol₃SiSiPh₂SiPh₃, Si₃C₅₁H₄₆ (gef./ber.): C, 82.14/82.42%; H, 6.36/6.24%. Die Ausbeuten betrugen 68 g (66%) p-TolSi₃Ph₇ bzw. 57 g (55%) p-Tol₃Si₃Ph₅.

2,2-Dibenzylhexaphenyltrisilan

Die vorstehende Synthesevorschrift kann weitgehend unverändert für $Bz_2Si(SiPh_3)_2$ übernommen werden. 18.4 g (35.5 mmol) Si_2Ph_6 in 500 ml Et_2O werden mit Na/K-Legierung gespalten [6] und die gebildete Suspension von Ph_3SiK zu 10 g (35.5 mmol) Bz_2SiCl_2 , gelöst in 100 ml Et_2O , langsam zugetropft (0 ° C). Man ersetzt den Ether durch Toluol und filtriert heiß. Beim Abkühlen fällt (PhCH₂)₂Si(SiPh₃)₂ in Form farbloser Kristalle aus.

Ausbeute: 19 g = 73%. Elementaranalyse $(C_6H_5CH_2)_2Si(SiPh_3)_2$, $Si_3C_{50}H_{44}$ (gef./ber.): C, 82.09/82.36%; H, 6.08/5.92%.

1-p-Tolyl-2,3-Diphenylpentabromtrisilan

Auf 20 g (26.9 mmol) p-Tol₃SiSiPh₂SiPh₃ werden 54 g (~670 mmol) HBr aufkondensiert (Bombenrohr). Nach 4-tägiger Reaktionszeit (Raumtemperatur), wird überschüssiger Bromwasserstoff und gebildetes C₆H₆ und C₇H₇ entfernt. Das zurückbleibende hellorange Öl löst man in n-Heptan. p-TolSi₃Br₅Ph₂ fällt bei – 30 °C in Form farbloser Kristalle aus. Geringe Mengen durch SiSi-Bindungsspaltung entstandenes (PhBr₂Si)₂ können durch Sublimation entfernt werden.

Elementaranalyse: p-TolBr₂SiSiBrPhSiBr₂Ph, Si₃C₁₉H₁₇Br₅ (gef./ber.): C, 31.30/30.13%; H, 2.35/2.34%.

1,3-Diphenylhexabromtrisilan

Auf 22 g Si_3Ph_8 werden im Bombenrohr 80 g HBr aufkondensiert. Nach zweimonatiger Reaktionszeit bei Raumtemperatur wird überschüssiger Bromwasserstoff sowie das gebildete Benzol abkondensiert und der Rückstand aus n-Heptan umkristallisiert. Man erhält 12 g (54%) (PhBr₂Si)₂SiBr₂ in Form farbloser Kristalle.

Elementaranalyse: $Si_3C_{12}H_{10}Br_6$ (gef./ber.): C, 19.91/20.08%; H, 1.53/1.40%; Br, 66.74/66.78%.

Verbindung	С	Н	Reinigung	Ausbeute (%)
HPh ₂ SiSiPh ₂ SiPh ₂ H,				
Si ₃ C ₃₆ H ₃₂	78.50(78.77)	5.79(5.88)	Umkrist. aus Toluol	65
H ₂ PhSiSiH ₂ SiH ₂ Ph,				
Si ₃ C ₁₂ H ₁₆	58.70(58.95)	6.57(6.60)	Kp. 80–81° C/0.03 mmHg	60
H ₂ PhSiSiPhHSiH ₂ Ph,				
Si ₃ C ₁₈ H ₂₀	66.97(67.43)	6.09(6.29)	Kp. 148 ° C/0.01 mmHg	64
H ₂ PhSiSiPh ₂ SiH ₂ Ph,	72.34(72.66)	5.98(6.10)	zähfl. Öl, keine weitere	65
Si ₃ C ₂₄ H ₂₄			Reinigung erforderlich	

Elementaranalysen (Gef. (ber.) (%)) der Trisilane H_nSi₃Ph_{8-n}

Phenylwasserstofftrisilane

Nach Standardmethoden (Hydrierung mit LiAlH₄) können aus den Phenylhalogentrisilanen die Wasserstoffderivate erhalten werden. Sie können entweder durch Destillation oder Umkristallisieren gereinigt werden (Tabelle 1). Die Ausgangsverbindungen wurden teilweise nach Literaturangaben synthetisiert [4,7].

Die Umsetzung der Trisilane $(Ph_3Si)_2SiH_2$, $HPh_2SiSiPh_2SiPh_3$ und $(HPh_2Si)_2SiPh_2$ mit Bromoform bzw. Iodoform erfolgt am besten in siedendem n-Heptan mit einem überschuß HCBr₃ bzw. HCI₃. Die Reaktionszeiten betragen 3-7 Tage (Tabelle 2). Nach dem Abziehen der flüchtigen Bestandteile wird aus Toluol umkristallisiert.

Spektren

Die gemessenen ²⁹Si-Verschiebungen und SiH-Kopplungskonstanten sind in Tabelle 3 zusammengefaßt. Für diagnostische Zwecke wichtig ist die Tatsache, daß zwar Ph_nX_{3-n} Si-Endgruppen in einem sehr engen Verschiebungsbereich liegen,

Tabelle 2

Elementaranalysen (Gef. (ber.) (%)) der mit $HCBr_3$ und HCI_3 synthetisierten Phenylbrom- und Phenyliodtrisilane

Verbindung	С	Н	Reaktionsdauer	Ausbeute (%)
(IPh ₂ Si) ₂ SiPh ₂ ,		· .		
Si ₃ C ₃₆ H ₃₀ I ₂	54.21(54.0)	4.94(3.78)	60 h	90
BrPh ₂ SiSiPh ₂ SiPh ₃ ,				
Si ₃ C ₄₂ H ₃₅ Br	71.22(71.67)	5.01(5.01)	10 Tage	85
IPh2SiPh2SiPh3,				
Si ₃ C ₄₂ H ₃₅ I	67.06(67.18)	4.49(4.70)	3 Tage	90
(Ph ₃ Si) ₂ SiPhI,				
Si ₃ C ₄₆ H ₃₅ I	66.92(67.18)	4.68(4.70)	2 Tage	90
$(Ph_3Si)_2SiI_2$,				
Si ₃ C ₃₆ H ₃₀ I ₂	53.54(54.0)	3.78(3.78)	4 Tage	80
(Ph ₃ Si) ₂ SiHBr,				
Si ₃ C ₃₆ H ₃₁ Br	68.45(68.87)	5.24(4.98)	2 Tage	95
(Ph ₃ Si) ₂ SiBr ₂ ,				
Si ₃ C ₃₆ H ₃₀ Br ₂	61.44(61.19)	4.36(4.28)	7 Tage	75

Tabelle 1

		and down former		14/				
Verbindung	δ(¹ Si)	δ(² Si)	δ(³ Si)	¹ /(HiS ¹) ¹	J(² SiH)	$^{2}J(^{1}SiH)^{2}$	J(² SiH)	
<i>p</i> -TolPh ₂ ¹ Si- ² SiPh ₂ - ³ SiPh ₃	- 19.0	- 42.2	- 18.7					
p-Tol, ¹ Si- ² SiPh, - ³ SiPh,	- 19.3	- 42.2	- 18.5					
Ph ₁ ¹ Si- ² SiBz ₂ - ¹ SiPh ₁	- 16.8	- 34.6						
<i>p</i> -TolBr ₂ ¹ Si- ² SiBrPh- ³ SiBr ₂ Ph	-4.9	- 25.8	- 4.8					
PhBr ₂ ¹ Si- ² SiBr ₂ - ¹ SiBr ₂ Ph	- 10.2	- 18.0						
I ₃ ¹ Si- ² SiI ₂ - ³ SiI ₂ Ph	- 154.4	- 132.4	- 63.4					
IPh ₂ ¹ Si- ² SiPh ₂ - ¹ SiPh ₂ I	- 16.6	- 44.2						
BrPh ₂ ¹ Si- ² SiPh ₂ - ³ SiPh ₃	+1.2	- 42.2	- 19.1					
IPh ₂ ¹ Si- ² SiPh ₂ - ³ SiPh ₃	- 12.1	- 42.3	- 19.2					
Ph ₃ ¹ Si- ² SiPhI- ¹ SiPh ₃	- 21.8	- 36.4						
Ph ₃ ¹ Si- ² Sil ₂ - ¹ SiPh ₃	- 23.8	- 46.9						
Ph ₃ ¹ Si- ² SiHBr- ¹ SiPh ₃	- 19.8	- 36.9			185.8	a		
Ph ₃ ¹ Si- ² SiBr ₂ - ¹ SiPh ₃	- 20.6	+ 8.3						
HPh, ¹ Si- ² SiPh,- ¹ SiPh,H	- 31.9	- 42.4		188.9			a	
H ₂ Ph ¹ Si- ² SiH ₂ ⁻¹ SiPhH ₂	- 60.1	- 110.6		196.9	188.0	a	7.3	
H ₂ Ph ¹ Si- ² SiPhH- ¹ SiPhH ₂	- 58.7	- 68.1		193.3	185.5	a	ø	
H ₂ Ph ¹ Si- ² SiPh ₂ - ¹ SiPhH ₂	- 58.2	- 41.7		191.0			a	
^a Konnte wegen der Verbreiterung	der Si-Signale dur	ch die Phenylproi	tonen nicht aufg	elöst werden.				

Tabelle 3 ²⁹Si-Parameter der dargestellten Trisilane (δ(Si) gegen TMS, Kopplungskonstanten in Hz) 155

Tabelle 4

Infrarotspekten ($< 1000 \text{ cm}^{-1}$) der synthetisierten Phenyltrisilane

<i>p</i> -TolPh ₂ SiSiPh ₂ SiPh ₃	850w, 800s, 735vs, 690vs, 680sh, 620m, 610m, 545s, 530s, 495s, 470s, 450m, 425s, 380s, 355m, 330s.
(Ph ₃ Si) ₂ SiBz ₂	920w, 905mw, 850mw, 820m, 803m, 775s, 765s, 752s, 742s, 738s, 734s, 700vs, 674m, 667w, 620mw, 570m, 550m, 525s, 520s, 490s, 485sh, 472s, 468sh, 450mw, 440m, 348mw, 320s.
<i>p-</i> Tol ₃ SiSiPh ₂ SiPh ₃	850w, 800s, 735vs, 695vs, 685sh, 625s, 600s, 540s, 525s, 490vs, 470vs, 450m, 425mw, 417m, 380s, 350w, 325s.
<i>p-</i> TolBr ₂ SiSiBrPhSiBr ₂ Ph	845w, 801s, 775w, 735vs, 701s, 690vs, 685s, 634m, 617w, 552m, 535sh, 476vs, 455s, 447s, 424m, 360m, 325m, 307m.
(PhBr ₂ Si) ₂ SiBr ₂	738vs, 703vs, 690vs, 555s, 530s, 485vs,b, 450vs,b, 358s, 285s.
I ₃ SiSiI ₂ SiI ₂ Ph	840w, 730ms, 685ms, 485w, 445s, 430m,b, 415m, 395vs, 385vs, 370sh, 350sh, 330m, 315ms, 290m, 250s,b.
(IPh ₂ Si) ₂ SiPh ₂	910w, 845w, 775w, 730vs, 683vs, 612w, 545m, 528w, 475vs, 460s, 447m, 435s, 428m, 417s, 362s, 315vs.
BrPh ₂ SiSiPh ₂ SiPh ₃	856w, 734vs, 698vs, 680sh, 619w, 555s, 536s, 476vs,b, 423s, 374s, 323s.
IPh ₂ SiSiPh ₂ SiPh ₃	855w, 732s, 695vs, 615w, 545m, 528mw, 490m, 475s,b, 452m, 423m, 402mw, 370mw, 315s.
(Ph ₃ Si) ₂ SiPhI	833mw, 805w, 732s, 695s,b, 675m, 615w, 540vs, 523vs, 490vs, 487vs, 466vs, 450m, 430w, 420w, 400s, 388w, 350vs, 315vw.
(Ph ₃ Si) ₂ SiI ₂	850vw, 738s, 705sh, 695vs, 676m, 618w, 536s, 520s, 491s, 455mw, 434w, 362s, 327m, 304ms.
(Ph ₃ Si) ₂ SiHBr	2078s, 900m, 856w, 741vs, 697vs, 675s, 619mw, 549m, 528s, 520sh, 490vs, 480sh, 456m, 436ms, 419m, 382mw, 359m, 305m.
(Ph ₃ Si) ₂ SiBr ₂	850w, 735vs, 700vs, 670m, 615w, 543vs, 525s, 485vs, 475s, 450m, 440m, 435m, 415vs, 390w, 375vw, 355vs, 308s.
(HPh ₂ Si) ₂ SiPh ₂	2075w,b, 910w, 850w, 790vs,b, 720vs,b, 690s, 615w, 532m, 500mw, 470vs,b, 440s, 430m, 412s, 390m, 382m, 375ms, 320m, 290s
(H ₂ PhSi) ₂ SiH ₂	2140sh, 2120vs, 910vs,b, 863m, 800s,b, 760m, 700vs,b, 645s, 633s, 518w, 525w, 464m.

Tabelle 4 (Fortsetzung)

(H ₂ PhSi) ₂ SiPhH	2135vs, 2100vs, 910s,b, 860w, 840w, 800s,	
	695s, 635s, 610m, 495m,b, 442m, 435m,	
	380m, 372m, 330w, 322w.	
(H ₂ PhSi) ₂ SiPh ₂	2130s, 2100s, 910s,b, 860w, 850w, 800s,	
2 2 2	700vs,b, 630s, 605m, 490m,b, 430m,b,	
	380m,b, 330w.	

 $-SiX_{2}$ und -SiPhX-Gruppierungen dagegen sehr unterschiedliche chemische Verschiebungen aufweisen können. So liegt die Resonanz der $-SiBr_2$ -Gruppe für Br_8Si_3 bei -26 ppm [8], für (Ph_3Si)_2SiBr_2 dagegen bei + 8.3 ppm. Beim Übergang zu den Iodderivaten wird der Bereich noch größer:

 $\delta(\text{SiI}_2) = -46.9 (\text{Ph}_3\text{Si})_2\text{SiI}_2 \text{ bzw.} -165.7 (\text{I}_3\text{Si})_2\text{SiI}_2.$

Es läßt sich kein klarer und eindeutiger Zusammenhang mit den Elektronegativitäten der Substituenten an den benachbarten Si-Atomen finden, so daß wohl Änderungen der Bindungswinkel sowie Anisotropieeffekte anliegender Bindungen dafür verantwortlich sind.

Die Infrarotspektren sind (bis auf die SiH-Valenzschwingungen) oberhalb von 1000 cm⁻¹ praktisch identisch. Eine Zuordnung einzelner Linien ist wegen vielfältiger Kopplungseffekte [9] kaum möglich. Erwähnt sei lediglich die für phenylierte Silane typische Lage der SiSi-Valenzschwingungen zwischen 500 und 600 cm⁻¹, die durch Kopplung mit den Phenylschwingungen q und r (Bezeichnung nach Whiffen [10]) zustande kommt.

Die IR-Spektren (Bereich $< 1000 \text{ cm}^{-1}$) sind in Tabelle 4 in kurzer Form ohne Zuordnung angegeben.

Dank

Die Autoren danken dem Fonds zur Förderung der wissenschaftlichen Forschung, Wien, für Personal- und Sachmittel im Rahmen des Projektes P 6991-CHE.

Literatur

- 1 K. Hassler und M. Pöschl, J. Organomet. Chem., 398 (1990) 225.
- 2 K. Hassler und M. Pöschl, Spectrochim. Acta, 47A (1991) 439.
- 3 K. Hassler und U. Katzenbeisser, in Vorbereitung.
- 4 K. Hassler und M. Pöschl, J. Organomet. Chem., 385 (1990) 201.
- 5 E. Hengge und H. Eberhardt, Monatsh. Chem., 110 (1979) 39.
- 6 H. Gilman und T.C. Wu, J. Org. Chem., 18 (1953) 753.
- 7 K. Hassler, Monatsh. Chem., 119 (1988) 1051.
- 8 H. Söllradl, Dissertation, T.U. Graz, 1982.
- 9 vgl. z.B. F. Höfler, Monatsh. Chem., 104 (1973) 694.
- 10 D.H. Whiffen, J. Chem. Soc., (1956) 1350.